Mobility, Availability and Reaction Products of P from MAP, DAP and APP Fertilizers

Ganga Hettiarachchi, Raju Khatiwada and Joy Pierzynski Department of Agronomy Kansas State University Fluid Fertilizer Forum, February 2012

Introduction

- A high proportion of applied P is rapidly converted to insoluble phosphates that plants have virtually no access
- These transformations mainly depend on
 - fertilizer sources
 - type of soil
 - soil moisture conditions
- Understanding major reaction products of fertilizer P in different soil types and their solubility may help designing better suited fertilizer formulations for different soil types
- Efficient fertilizers result agronomic, economic and environmental benefits
 KANSAS STATE

Objectives

- To understand mobility and reactions products of P from MAP, DAP and APP fertilizers in different soils
- To understand fate of fertilizer P in soils using P fractionation method
- To integrate mobility, reaction products and wet chemical data to understand their potential performance in different soils

Soils

Two soils 1. Oxisol, Brazil

2. Calcareous soil, Idaho

Methodology

Treatments: (4)

Control

MAP (11-52-0 N-P₂O₅-K₂O)

DAP (18-46-0 $N-P_2O_5-K_2O$)

APP (11-37-0 N-P₂O₅-K₂O)

Petri dish size: 87mm in diameter Moisture: 60% MWHC MAP: 42 mg granules per dish DAP: 43.4 mg granule APP: equivalent amount of P N balanced by Urea

5 + 2 replicates

Incubation time: 5 weeks of incubation at 25° C

Methodology (cont.) Soil Sampling and Analyses

Methodology (cont.)

Wet chemical based analyses

- Soil pH (1:5 soil:water)
- Total P Salicylic sulfuric acid digestion (Bremner et al., 1982)
- P fractionation (modified Hedley et al., 1982)
- P Speciation and granule observations
- X-ray Absorption Near Edge Structure Spectroscopy (XANES)

Data analysis:

Principal Component Analysis (PCA) followed by Linear combination fitting (LCF)

 Scanning Electron Microscopy- Energy Dispersive X-ray Analysis

Selected Soil Properties

Sample ID	рН	Ext. Ca	CEC	OM	Ext. Fe	Ext. Mn	Ext. Al	Total N	Total P
	(H ₂ O)	mg/kg	meq/100g	%			mg/kg		
Brazil soil	4.3	49	12.4	3.7	52.9	2.2	79.5	1243	237
Idaho soil*	8.0	3376	19.6	0.6	2.4	3.6	n.d.	403	468

 * CaCO₃ = 7.4%

Fertilizer P Distribution- Brazil Acid Soil

Fertilizer P Distribution- Idaho Calc. Soil

Soil pH- Brazil Acid Soil

RSITY

Soil pH- Idaho Calcareous Soil

X-ray absorption near-edge structure (XANES) spectroscopy analysis

Normalized P K-XANES spectra of standards used for LCF fitting

KANSAS STATE

P XANES Data- Brazil Acid Soil

Soil P species (%)

Section I- 0 to 15 mm diameter- innermost section

Treatment	Aluminum Phosphate	Alumina Adsorbed P	Ferrihydrite Adsorbed P	Vivianite (Fe(II) phosphate)	Red. Chi Square	
Control	13.9	-	64.1	21.9	0.27	
MAP	-	-	72.1	27.9	0.32	
DAP	-	47.3	-	52.7	0.04	
APP	-	43.6	-	56.4	0.02	

The total percentage was constrained to be 100% in all fits. Typical uncertainties in the percentages listed for each standard component are 5%.

P XANES Data- Idaho Calc. Soil

Soil P species (%)

Section I- 0 to 15 mm diameter- innermost section

Treatment	Apatite	Hydroxy apatite	Ferrihydrite Adsorbed P	Vivianite (Fe(II) phosphate)	Red. Chi Square	
Control	20.4	48.2	31.4	-	0.06	
MAP	59.2	-	31.0	9.8	0.02	
DAP	64.1	-	35.9	-	0.04	
APP	27.8	-	48.2	24.0	0.04	

The total percentage was constrained to be 100% in all fits. Typical uncertainties in the percentages listed for each standard component are 5%.

SEM Images of Granules

Original MAP granule

Incubated MAP granule- Brazil soil

Incubated MAP granule- Idaho soil

Original DAP granule

Incubated DAP granule- Brazil soil

Incubated DAP granule- Idaho soil

EDXA- Brazil Acid Soil- MAP

Original MAP ~ 22% P

Weight%

		С	25.7	
		0	33.7	
		F	6.0	
trun	n 1	Mg	2.1	
		Al	7.3	
		Si	2.0	
		Р	14.2	
		К	0.4	
		Са	0.8	
		V	0.5	
			6.5	
k	8 eV	Ро	0.9	
				Έ
		Totals	100.0	Υ

Element

Incubated MAP granule

1

Granule MAP

Fluid MAP

Hettiarachchi et al., 2006. SSSAJ

EDXA- Brazil Acid Soil- DAP

EDXA- Idaho Calcareous Soil

Element	Weight%				
Ν	10.7				
0	53.5				
Mg	0.8				
Al	1.1				
Р	31.8				
S	1.0				
	1.1				
Totals	100.0				
	Element				

Original MAP granule

Incubated MAP granule

۱.						
,	Element	Weight%				
	С	26.4				
	0	31.0				
	F	3.6				
	Mg	1.3				
	Al	4.1				
	Si	3.1				
	Р	11.5				
	К	2.2				
	Ca	10.2				
		5.5				
			Y	Y	[]	Ð
	Totals	100.00	L	Т		Y

EDXA- Idaho Calcareous Soil

Original DAP granule

Highest pH

Appeared to have more Ca and P compared to MAP

Element	Weight%
С	13.8
0	35.8
F	7.5
Na	0.6
Mg	1.4
Al	5.3
Si	0.9
Р	13.8
Cl	0.7
Κ	1.8
Са	13.5
	4.9
Totals	100.0

Incubated DAP granule

Summary

- Soil acidification or resistance to acid neutralization effects of P fertilizers followed the order of APP > MAP > DAP
- Diffusion of P from APP appeared to be greater than the granular MAP or DAP in this calcareous soil
- Greater acidification and enhanced diffusion of APP could be the reasoning for reduced Ca-P species observed in the zones immediately surrounding the point of P application in calcareous soils

Summary (cont.)

- Diffusion of P appears to be low in this acid soil
- Use of DAP maybe beneficial for high AI and Fe containing acid soils as *"acid* neutralizing *effects"* of DAP is greater than the MAP or APP
- P reaction products of MAP applied acid soil had less AI-P forms and more Fe-P forms while the opposite was true for the DAP and APP
- Results need to be integrated with P fractionation data to better understand their implications on potential P availability

Acknowledgements

- Kansas State University- P Fellowship Consortium of International Plant Nutrition Institute; Mosaic, Agrium, Potash Corp., and JR Simplot, and Fluid Fertilizer Foundation for funding
- E. Francisco, L. Prochnow and T. Tindall for providing soils
- Kent Hampton for SEM-EDXA data collection
- Trudy Bolin at the sector 9 of the Advanced Photon Source for help with XANES data collection

Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357

