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Introduction 

• A high proportion of applied P is rapidly converted to 

insoluble phosphates that plants have virtually no 

access 

• These transformations mainly depend on  
– fertilizer sources 

– type of soil 

– soil moisture conditions 

• Understanding major reaction products of fertilizer P 

in different soil types and their solubility may help 

designing better suited fertilizer formulations for 

different soil types 

• Efficient fertilizers result agronomic, economic and 

environmental benefits 



Objectives 

• To understand mobility and reactions products 

of P from MAP, DAP and APP fertilizers in 

different soils 

• To understand fate of fertilizer P in soils using 

P fractionation method 

• To  integrate mobility, reaction products and 

wet chemical data to understand their 

potential performance in different soils   

 

 



Soils 

Two soils 

1. Oxisol, Brazil 

 

 

 

 

2. Calcareous soil, Idaho 

 

 

 

 

 

 

 

 

 

 

 

 

 



Methodology 

Treatments: (4) 

 Control   

 MAP (11-52-0 N-P2O5-K2O)   

 DAP (18-46-0 N-P2O5-K2O) 

 APP (11-37-0 N-P2O5-K2O) 

Petri dish size: 87mm in diameter 

Moisture: 60% MWHC 

MAP: 42 mg granules per dish 

DAP: 43.4 mg granule 

APP: equivalent amount of P 

N balanced by Urea  

5 + 2 replicates 

 

Incubation time: 5 weeks of incubation at 25o C 
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Reaction products 

in granules and 

soils 

SEM-EDX, XANES 

• Changes in structure 

• In situ elemental analyses 

• Reaction products 

Methodology (cont.) 

Soil Sampling and Analyses 



Methodology (cont.) 

Wet chemical based analyses 

• Soil pH (1:5 soil:water) 

• Total P –Salicylic sulfuric acid digestion  

 (Bremner et al., 1982) 

• P fractionation (modified Hedley et al., 1982) 

P Speciation and granule observations 

• X-ray Absorption Near Edge Structure 

Spectroscopy (XANES) 

Data analysis: 

 Principal Component Analysis (PCA) 

 followed by Linear combination fitting (LCF) 

• Scanning Electron Microscopy- Energy 

     Dispersive X-ray Analysis 

   



Selected Soil Properties 

Sample ID pH Ext. Ca CEC OM Ext. Fe Ext. Mn Ext. Al Total N Total P 

  (H2O)  mg/kg meq/100g % ---------------- mg/kg ------------------ 

Brazil soil 4.3 49 12.4 3.7 52.9 2.2 79.5 1243 237 

Idaho soil* 8.0 3376 19.6 0.6 2.4 3.6 n.d. 403 468 

* CaCO3 = 7.4% 



Fertilizer P Distribution- Brazil Acid Soil 

Total P distribution
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Fertilizer P Distribution- Idaho Calc. Soil 

Total P distribution
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Soil pH- Brazil Acid Soil 

Diameter (mm)
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Soil pH- Idaho Calcareous Soil 
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X-ray absorption near-edge structure (XANES) 

spectroscopy analysis 
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P XANES Data- Brazil Acid Soil 

Section I- 0 to 15 mm diameter- innermost section 

Soil P species (%) 

Treatment 

Aluminum 

Phosphate 

Alumina 

Adsorbed P 

Ferrihydrite 

Adsorbed P 

Vivianite (Fe(II) 

phosphate) 

Red. Chi 

Square 

Control 
13.9 - 64.1 21.9 0.27 

MAP 
- - 72.1 27.9 0.32 

DAP 
- 47.3 - 52.7 0.04 

APP 
- 43.6 - 56.4 0.02 

The total percentage was constrained to be 100% in all fits.   

Typical uncertainties in the percentages listed for each standard  

component are 5%. 

 



P XANES Data- Idaho Calc. Soil 

Soil P species (%) 

Treatment Apatite 

Hydroxy 

apatite 

Ferrihydrite 

Adsorbed P 

Vivianite 

(Fe(II) 

phosphate) 

Red. Chi 

Square 

Control 
20.4 48.2 31.4 - 0.06 

MAP 
59.2 - 31.0 9.8 0.02 

DAP 
64.1 - 35.9 - 0.04 

APP 
27.8 - 48.2 24.0 0.04 

The total percentage was constrained to be 100% in all fits.   

Typical uncertainties in the percentages listed for each standard  

component are 5%. 

 

Section I- 0 to 15 mm diameter- innermost section 



SEM Images of Granules 

Original MAP granule Incubated MAP granule- Brazil soil Incubated MAP granule- Idaho soil 

Original DAP granule Incubated DAP granule- Brazil soil Incubated DAP granule- Idaho soil 



EDXA- Brazil Acid Soil- MAP 
Element Weight% 

      

N 10.7 

O 53.5 

Mg 0.8 

Al 1.1 

P 31.8 

S 1.0 

Fe 1.1 

    

Totals 100.0 Original MAP granule 

Element Weight% 

      

C  25.7 

O 33.7 

F 6.0 

Mg  2.1 

Al 7.3 

Si 2.0 

P 14.2 

K 0.4 

Ca 0.8 

V  0.5 

Fe 6.5 

Po 0.9 

    

Totals 100.0 
Incubated MAP granule 

Original 

MAP ~ 22% P 
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EDXA- Brazil Acid Soil- DAP 

Original DAP granule 

Incubated DAP granule 

Element Weight% 

      

C 13.1 

N 14.0 

O 40.1 

Mg 0.5 

Al  0.9 

P 26.6 

S 2.1 

Ca 0.4 

Fe 1.0 

Po  1.3 

    

Totals 100.0 

Element Weight% 

      

C  26.3 

O 30.1 

F 5.5 

Mg  1.6 

Al  6.4 

Si 2.0 

P  12.6 

K 0.7 

Ca 1.8 

V  0.6 

Cr  0.6 

Fe  11.2 

Po 0.8 

    

Totals 100.0 

Original 

MAP ~ 20% P 



EDXA- Idaho Calcareous Soil 
Element Weight% 

      

N  10.7 

O  53.5 

Mg 0.8 

Al  1.1 

P  31.8 

S  1.0 

Fe  1.1 

    

Totals 100.0 
Element Weight% 

      

C  26.4 

O  31.0 

F  3.6 

Mg 1.3 

Al 4.1 

Si  3.1 

P  11.5 

K 2.2 

Ca 10.2 

Fe 5.5 

    

Totals 100.00 

Original MAP granule 

Incubated MAP granule 



EDXA- Idaho Calcareous Soil 

Original DAP granule 

Incubated DAP granule 

Element Weight% 

      

C 13.1 

N 14.0 

O 40.1 

Mg 0.5 

Al 0.9 

P 26.6 

S 2.1 

Ca 0.4 

Fe 1.0 

Po  1.3 

    

Totals 100.0 

Element Weight% 

      

C  13.8 

O  35.8 

F 7.5 

Na  0.6 

Mg  1.4 

Al  5.3 

Si  0.9 

P  13.8 

Cl  0.7 

K  1.8 

Ca  13.5 

Fe  4.9 

    

Totals 100.0 

Highest pH 

 

Appeared to have 

more Ca and P 

compared to MAP 

 



Summary 

• Soil acidification or resistance to acid 

neutralization effects of P fertilizers followed the 

order of APP > MAP > DAP  

• Diffusion of P from APP appeared to be greater 

than the granular MAP or DAP in this calcareous 

soil 

• Greater acidification and enhanced diffusion of 

APP could be the reasoning for reduced Ca-P 

species observed in the zones immediately 

surrounding the point of P application in 

calcareous soils 

 

  



• Diffusion of P appears to be low in this acid soil 

• Use of DAP maybe beneficial for high Al and Fe 

containing acid soils as “acid neutralizing effects” 

of DAP is greater than the MAP or APP 

• P reaction products of MAP applied acid soil had 

less Al-P forms and more Fe-P forms while the 

opposite was true for the DAP and APP 

• Results need to be integrated with P fractionation 

data to better understand their implications on 

potential P availability 

Summary (cont.) 
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